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SUMMARY

Utilization of RS-232 serial data busses in the The Transport
Systems Research Vehicle (TSRV) at the NASA Langley Research
Center has increased beyond normal terminal interfaces. The Data
Link and Differential Global Positioning Satellite (DGPS) flight
programs conducted during 1930 made extensive use of RS5-232 as a
real-time experiment critical data transfer medium. At least two
windshear experiments will also require this data bus for real-
time transfer of critical data.

Various software modules, all task specific, are required for
interfacing the TSRV computers and other peripherals connected via
RS-232 busses. To enhance such development tasks, a PC-based RS-
232 monitoring system has been developed. An important feature of
the system is the capability for simultaneous real-time monitoring
of two data lines with each line's input displayed in a separate
window on the PC screen. A number of online selectable features
such as binary display, transmission to either or both ports, and
binary log files are incorporated.

The RS-232 bus monitoring system was developed by writing
communication software for an IBM PC or compatible using two of
the four normal communication ports (COM 1 through COM 4). Also
an added advantage for TSRV use was gained by development of a
special configuration for the TSRV Grid laptop computers, a task
requiring software adaptation to a Grid nonstandard serial port.

User documentation and discussions of the algorithms used to
develop the RS-232 bus monitor and control program are contained
in this document. Detailed technical and tutorial discussions of
C and assembly language programming are not included, but numerous
references containing that type of information are cited.
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1.0 INTRODUCTION

The Transport Systems Research Vehicle (TSRV) is a research flight
system operated by the Advanced Transport Operating Systems
Program Office (ATOPSPO) at the NASA Langley Research Center.
Real-time data transfer among experimental system computers and
other equipment units in the TSRV system is accomplished using a
variety of data bus types. ARINC 429, Digital Autonomous Terminal
Access Communication (DATAC), high-speed parallel Direct Memory
Access (DMA), and specialized high bit rate serial busses are
prominent examples.

RS-232 communication links have traditionally been used only for
interfacing terminals to the host VAX minicomputers in the TSRV
system. However, during 1990 this data bus became a critical link
in two highly successful flight research programs--the Data Link
and the Differential Global Positioning Satellite (DGPS)
experiments. Up to four separate RS-232 links operating
simultaneously were required for support during these flight test
efforts with the major RS-232 subsystem in both programs being a
Packet Radio link used for ground to air data transfer.

For support of the TSRV windshear detection flight program,
significant real-time use of RS-232 busses for experiment-critical
data will be required. The same Packet Radio system mentioned
above will be used for data uplink in the Terminal Doppler Weather
Radar (TDWR) flight tests. Also, the windshear infrared detector
requires an RS-232 data bus for interface to airborne data
recording and display systems.

This extensive use of RS-232 data busses requires generation of
task-specific software for configuration of computer interfaces to
a number of peripherals, both programmable and non-programmable.
Serial communication hardware and firmware design variations among
these peripherals have presented difficulties in implementing the
required interfaces. For example some units, on initial power-up,
transmit character strings containing bytes that can be interpreted
as control codes by another connected unit. Troublesome results
such as communication hang-up and mode changes often result. These
extraneous characters can be difficult to identify using only the
connected systems, especially if normal communication functions
have been disrupted. However, once such problems are identified,
software can usually be readily confiqured to avoid conflicts.

Thus, for efficient development of the TSRV requirements, RS-232
bus diagnostic and monitoring aids are needed for troubleshooting
and debugging. This document describes one such troubleshooting
tool which was developed to utilize the serial communication
features of IBM PC's and compatibles, including the TSRV Grid
laptops. The resulting system can function as a simultaneous on-
line monitor for two RS-232 busses with input from each bus being
displayed in a separate window on a PC screen. A third window
displays data from a local device such as the keyboard or a disk



file. Text or binary display of the received data can be
selected. In the binary mode all received data bytes, printable
or not, are displayed in Hex form permitting detection of any
potentially troublesome control characters which might be missed
by normal text display. Log files to save (in binary form) all
received bytes and instantaneous screen capture to a file are
online selectable features. Also, transmission from a local
keyboard or disk file to either or both monitored ports is
selectable online in case output of test or configuration
information is needed.




2.0 LIST OF ABBREVIATIONS

ALT

ARINC

ASCII

ATOPSPO

AX

AH

AL

BIN

BIOS

BIT

BYTE

BX

BH

BL

CHAR

COM

CPU

CR

CRLF

CX

CL

DATAC

DGPS

Alternate Key on PC Keyboard
Aeronautical Radio, Inc.

American Standard Code for Information
Interchange

Advanced Transport Operating Systems
Program Office

General Purpose 8086 Family 16-Bit CPU Register
Upper Eight Bits of AX

Lower Eight Bits of AX

Binary

Basic Input/Output System

Binary Digit, One or Zero

Eight Bit Data Unit

General Purpose 8086 Family 16-Bit CPU Register
Upper Eight Bits of BX

Lower Eight Bits of BX

Name of a Computer Programming Language
Character

Communications Port of PC

Central Processor Unit

Carriage Return

Carriage Return/Line Feed

General Purpose 8086 Family 16-Bit CPU Register
Lower Eight Bits of CX

Digital Autonomous Access Terminal Communication

Differential Global Positioning Satellite



DMA Direct Memory Access
DOS Disk Operating System
DX General Purpose 8086 Family 16-Bit CPU Register

F1-F10 PC Function Keys

FDX Full Duplex

FIFO First-In, First-Out

HDX Half Duplex

Hex Hexadecimal Number

IBM International Business Machines
INOP Inoperative

INT_ NO Interrupt Number

I/0 Input/Output

ISR Interrupt Service Routifie ==~ -

MS-DOS Microsoft Disk Operating System °
NASA National Aeronautics and Space Administration
PC Personal Computer

RS-232 Serial Communication Standard

TDWR Terminal Doppler Weather Radar =
TSRV Transport Systems Research Vehicle
XMIT Transmit




3.0 USER'S GUIDE

Documentation describing the functions and use of the various
features of the RS-232 bus monitor system are contained in this

section.

3.1 General Description and Initialization

The RS-232 monitor system consists of an MS-DOS executable
program, with filename "DUALCOM.EXE", written to run on MS-DOS
computers. Figure 1 illustrates the screen appearance after the
system is initialized by entering that filename from the DOS
prompt. Three distinct windows will appear on the screen
separated by horizontal reverse video bars containing various
messages to indicate the status of the various operational modes.
Identification information for each message is also shown in
figure 1. The top window displays input from COM 1, the center
window displays input from COM 2, and the lower window displays
local input from the keyboard or a disk file.

As part of initial loading, the software checks internally for
availability of communication port hardware and initializes the
first two ports found. In the example of figure 1, it is seen
from messages at the left of the top and center bars that hardware
for communication ports one and two (COM 1 and COM 2) were found.
Immediately to the right of the port indications, messages appear
showing the communication parameters for each port. The default
values of these parameters are contained in program code but
online changes can be easily made for matching the parameters to
those of devices connected to the PC serial ports. Port
initialization also includes setup for interrupt driven two-way
data communication. Techniques used to determine port
availability and setup for interrupt driven operation are
discussed in later sections of this document.

In normal operation, the PC will contain one or two serial
communication ports connected to external RS-232 data lines. An
example application is illustrated in Figure 2 wherein the receive
lines of two PC serial ports are connected in parallel with the
transmit and receive lines of an RS-232 bus which 1is actively
passing data between two devices. The system is then monitoring
and displaying data simultaneocusly from each line in separate
windows. This creates a real time monitor of both input and
output data for each operating RS-232 device. Figure 3
illustrates the PC screen for this case.

3.2 Communication Port Hardware Variations

hFallure to flnd PC hardware communicatlon ports at startup will be

indicated by messages dlsplayed on the screen. An example of this

“is shown in figure 4 where COM 2 hardware was not found, and the

message "COM 2 INOP" appears at the left in the center bar where



port identification is normally displayed. The COM 2 window will
then remain blank throughout the session.

3.3 Mode Selection Features

Selection and use of all operational modes are discussed in the
following subsections. Keyboard entries for mode selection are
shown in the help screen which, as shown in the center of the
lower bar in figure 1, is displayed by entering ALT-Z (ALT and "Z"
keys simultaneously). Figure 6 illustrates the help screen
display wherein a window containing a help list is superimposed on
the PC screen. 1In the following discussion all specified keyboard
selection combinations, such as ALT-F1, means simultaneously
pressing the specified keys.

3.3.1 Log File Toggle

Log files for saving received data are toggled on and off by entry
of ALT-F1 from the keyboard. Activating this feature will result
in opening two files in the default directory for separate storage
of data bytes received from each communication port. The
filenames are "COM1IN.DAT" and COM2IN.DAT". Storage is in binary
form for exact preservation of all received bytes, printable or
not. The log file status is indicated on the screen by the
message at the right of the lower reverse video bar.

Normal program exit will result in proper closing of all open
files after associated nonempty buffers are flushed. However, the
monitor program uses its own intermediate 512-byte buffer to
collect data for file storage. When this buffer fills, the
appropriate file is opened, the buffer contents are written to it,
and the file is once again closed. Thus, no more than the last
512 bytes of saved data from any session should be lost by
improperly closed files; i.e. abnormal termination of program.

Once log files are created, all saved data will be appended to
them. With each program startup, a date and time stamp is placed
in each file to aid in correlation of operating sessions with
various portions of appended files.

Keyboard entries displayed in the lower window are not stored in a
file since the prime purpose of this program is accurate detection
and storage of input data from the RS-232 lines it monitors.

3.3.2 Full/Half Duplex Mode

This mode, which determines whether keyboard entries are reflected
on the screen, is toggled on and off by entering ALT-F3 from the
keyboard. Half duplex (HDX) results in local screen reflection of
keyboard entries while full duplex (FDX) does not. Normally full
duplex mode is used when the remote system echoes locally- SR
transmitted keyboard entries which are then displayed upon return.

Use of half duplex in that case will result in double display of




keyboard entries. Full duplex will almost never be applicable for
this monitor program.

3.3.3 Exit to DOS

Entry of ALT-X from the keyboard executes normal program
termination. A message will appear on the screen asking the user
to confirm the request for exit. Entering upper or lower case "Y"
or "RETURN" will result in exit to DOS, and the ESCAPE key or "“N"
(upper or lower case) will result in return to normal program
operation. Before returning to DOS, the program will flush any
buffers containing data for file saving and close all open files.
Normal program termination will also reset interrupt vectors and
communication port hardware to the configuration found at startup.

3.3.4 Carriage Return/Line Feed Toggle

This mode, controlled by entry of ALT-F3, determines whether a
line feed (0OA Hex) 1is appended in the screen display when the
program receives a carriage return (0D HEX). Its setting affects
all three windows. If a carriage return is displayed without a
line feed, each new line will be written over the previous one
resulting in display of only the last line received. Real time
visual observation of displayed information is thus difficult or
impossible. Appending the new line character to the carriage
return will move all displayed information up one row before
printing another line, thus preserving previous information until
scrolling past the top of a window occurs.

If the incoming data stream already contains a new line character
with each carriage return, then local appending will result in
double spacing on the screen.

3.3.5 Moving the Cursor Among Screen Windows

Keyboard entry of ALT-W will move the cursor to another of the
three screen windows. Repeated entry of this key combination will
cycle the cursor position through all windows in turn. This
feature can be useful for clearing the contents of a selected
window, a feature described in the next subsection. Cursor
positioning to print input data from a serial port or local device
will not be affected by this entry. Automatic window positioning
of the cursor for display of received data is done by program
software based on the data source.

3.3.6 Clearing the Window Containing the Cursor

Pressing ALT-C will clear the contents of the window containing
the cursor. Use of this feature with the cursor cycling described
above will permit total screen clearing.



3.3.7 TIransmission Modes

' The primary purpose of this system is line monitoring which, as
illustrated in figure 2, does not include hardware connection of
the RS-232 transmit lines from the monitoring PC. For increased
versatility, however, transmit modes are allowed and are online
selectable from the keyboard. As shown in figures 1, 3, 4, and 5,
transmit status is indicated by the "XMIT ON" or "XMIT OFF"
messages in the right center of the COM 1 and COM 2 status bars.
Entry of ALT-F2 controls the state of this mode which is
individually selectable for each communication port allowing
locally entered keyboard data to be transmitted to either,
neither, or both ports. Repeated entry of ALT-F2 will cycle
through this mode for both ports and the messages will change to
properly indicate the status.

Ability to transmit from the monitoring system can be convenient
if test or configuration data needs to be sent to a device being
monitored. Figure 7 shows an example implementation which has
been used for TSRV packet radio operations. The hardware
switching arrangement permits toggling the receive line of each
RS-232 device between its normal operating data source and the
transmit line of the monitoring PC. This operating mode
eliminates any requirement for hardware or software
reconfiguration if new control parameters need to be sent to
either RS-232 device. The default state of the transmit mode is
off and care should always be exercised in its use to prevent
parallel connection of two transmitters to the same receiver.

3.3.8 QplQad_Qf_a_Ellﬁ

A typical use of the transmlt mode descrlbed in section 3 3.7 is
sending a file containing new configuration parameters to a device
such as a packet radio modem. Pressing the PAGE UP key will
prompt the user for a filename to send. The filename must then be
entered complete with MS-DOS path information. Only ASCII
- (American Standard Code for Information Interchange) files can be
used. The ENTER key starts file transfer and a beep will signal
its completion. Transmitted data characters scroll past in the
lower screen window if half duplex is active.

3.3.9 Character or Bipary Display Mode

By default all received data bytes are printed on the screen in
normal character (text) mode. Figures 3 and 4 illustrate the
resulting screen appearance. For reliable detection and
identification of non-printable control characters, however, a
binary display mode is available in which the Hex representation
of all received bytes will be written to the screen. Figure 5
illustrates the resulting screen for this mode with 16 bytes
displayed on each line. The right side of the display contains
the normal text representation of all printable bytes with a
period appearing for any that are non-printable.




The character/binary display mode can be individually toggled for
each of the two upper windows. As shown by the help screen in
figure 6, this mode for the upper and center windows is controlled
by ALT-F9 and ALT-F10 respectively. Status of this mode is
indicated by the messages "CHAR" or "BIN" at the right of the two
upper bars. Binary display mode does not exist for the lower
window.

3.3.10 Communication Port Parameter Select

Capability for online communication parameter selection and change
are important features of any versatile serial communication
program. This monitor system permits individual configuration of
the ports associated with each of the two upper windows. As can
be seen from the help screen in Figure 6, this feature in the
upper and center windows is controlled by ALT-F7 and ALT-F8
respectively

Figure 8 illustrates the screen appearance when online parameter
selection is requested. Two small menu windows are superimposed
on the screen. One contains the baud rate menu while the other
contains a menu of parity, word length, and stop bit parameters.
Each menu window identifies the port in question and lists the
currently active parameter value. When these menus are first
displayed, the blinking cursor appears at the "SELECTION" prompt
in the baud rate window indicating that this parameter is to be
selected first., Valid selections are a menu number or carriage
return to retain the present value. After a valid baud rate
selection, the cursor moves to the other menu window for similar
selection of remaining parameters. Then the menu windows
disappear, the ports are reconfigured per the selections, and the
parameter messages at the left of the two upper bars reflect the
new values.

3.3.11 mmmgn,@nmmw;a

Instantaneous snapshots of screen contents can be saved to a file
by entry of ALT-G from the keyboard. A file "SCREEN.DAT" is
created in the default directory for this storage and each captured
screen is appended to this file. With each screen capture, the
file is opened, screen data are written to it, and it is closed.
Thus, abnormal program termination should result in loss of no
captured screen data.

4.0 PROGRAMMING TECHNIQUES AND ALGORITHMS

Section 4.0 contains descriptions of many of the programming
techniques and algorithms used to develop the RS-232 bus monitor
system. Tutorial discussions of C and assembly language
programming are not included, but numerous references to
publications containing this type of information are provided.



4.1 General Description

The RS-232 monitor development effort consisted in large part of
communication software development. Mixed language programming
using Turbo C and Turbo Assembler for MS-DOS, both products of
Borland International, was used. Prominent programming tasks
included initialization of IBM PC serial communication hardware
for interrupt driven data transfer, interrupt vector redirection,
direct writing to video memory for rapid screen display, detection
and handling of keyboard input, and file handling.

Figures 9 and 10 are flowcharts outlining total program operation.
Functions for initial setup and keyboard input handling are shown
in figure 9, and actions dealing with serial port input are shown
in figure 10. Discussions in the following sections will refer to
the labeled symbols shown in these two figures.

4.2 Check for Serial Communication Port Hardware

A test for availability of serial port hardware, element 92 in
figure 9, is the first setup operation performed. During boot-
up, MS-DOS and the IBM BIOS (Basic Input/Output System) check the
status of hardware peripheral configuration and accordingly
initialize memory at specified segment and offset locations.
References 3, 6, and 9 are examples of a number of publications
which provide information on the segmented architecture and
mapping of IBM PC memory. Information in these publications shows
serial communication port status information appearing at offset
zero of segment 0040 Hex, or absolute memory location 400000 Hex.
The first four 16-bit locations starting at this memory cell
contain I/0 (Input/Output) port addresses, beginning with COM 1,
for all communication ports found by the BIOS at boot-up.

To retrieve the required port information, a C language pointer to
an integer data type (16 bit word in Turbo C) is defined and
initialized to point to memory location 400000 Hex. The following
statement can be used to define "COM_IO" as such a pointer.

#define COM_IO ((unsigned int far *) (0x400000))

Pointers are, in fact, addresses. When locked to specific
locations, pointers should be declared as "far" to ensure
inclusion of both segment and offset address components. This
allows the selected location to be accessed no matter where it
resides in physical memory (See reference 1.). Using "COM_IO",
the contents of the required four 16-bit memory elements can be
acquired and placed into an array with the following C code:

index = 0;
while{ index <= 3 )
cm_port [index] = *(COM_IO + index++ );
Here "index" must be declared as an integer and "cm_port [4]" must
be declared as an array of unsigned integers. The expression

10



*(COM_IO + index) means fetch the contents of the 16-bit location
pointed to by (COM_IO + index).

The notation "index++" in the while loop causes the integer
variable "index" to be incremented after each of four iterations.
This, in effect, increments an integer pointer which causes a 16-
bit value to be read from each of four successive locations. Each
16-bit value read is a port address which is placed in successive
elements of the array "cm _port"™. Array elements must then be
checked against I/0 addresses in the following table to determine
which ports were found.

Port i/O Address
COM 1: 03F8 Hex
COM 2: 02F8 Hex
COM 3: 03E8 Hex
COM 4: 02E8 Hex

As depicted in elements 9B and 9E of figure 9, checks are first
made in turn for COM 1 and COM 3. If COM 1 is located then no
check is made for COM 3 since these ports, while using different
I/0 port addresses, share a common interrupt number and the
monitor program will not resolve the resulting conflicts. If
either is found, it is initialized (elements 9C and 9F) and a flag
is set to so indicate (element 9D). ‘

The same procedures are then performed to check for the existence
of COM 2 or COM 4, actions represented by elements 9G, 9J, 9H, and
9L in figure 9. Again only the first of these two ports found
will be used because they also share a common interrupt number.
Element 9I shows a flag being set if either of these two ports
have been initialized for use.

All supported ports found will have been setup for use after
completion of the action represented by element 9I. Possibilities
are:

. Any one of the four ports
. COM 1 and COM 2 B
COM 1 and COM 4

.. COM 2 and COM 3

. COM 3 and COM 4

vle W N

If no ports at all are detected, exit to DOS will occur as shown
in elements 9K and 9Y.

4.3 cQmmunigatiggng;LylniLializanign

Initialization of the communication ports selected for use is
represented by elements 9C, 9F, 9H, and 9L of figure 9. Tasks
involved are setting communication parameters, changing interrupt

11



vectors, and writing interrupt service routines (ISR's) specific
to program requirements.

4.3.1 Interrupt Interception and Redirection

Occurrence of either a hardware or software interrupt in the IBM
PC results in immediate redirection of processing to the address
of a corresponding ISR. Resulting action will be determined by
processor instructions placed in the ISR by the programmer. All
ISR addresses for the IBM PC are contained in interrupt vector
tables which comprise the lowest 1024 memory locations. Each
interrupt vector consists of a four-byte block with each block
having an associated interrupt number, or type, starting at zero
and continuing through 255.

Application programs can intercept an interrupt by changing the
contents of its vector thus directing processing to a different
address when the interrupt occurs. This new address must contain
an ISR written by the programmer to perform the specific actions
desired. Internal MS-DOS software services accessible via
assembly instructions are provided for this vector redirection;
but, most C compilers now contain higher level functions to
accomplish this. 1In Turbo C the interrupt vector redirection
functions are "getvect ()" and "setvect ()" which are used as
follows:

entry handler = getvect (INT_NO);
Fetch the address of the handler for interrupt type INT_NO
and place it into the variable "entry handler". This
permits reset at program exit.

setvect (INT_NO, prog_handler);
Replace the interrupt vector for INT NO with the
address of the function "prog handler" which points to a
user-written ISR.

The variable INT_NO represents the number associated with the
hardware or software interrupt being redirected. These Turbo C
library functions were used in the monitor program described
herein to intercept hardware interrupt numbers OC Hex and OB Hex.
These numbers correspond to COM 1 and COM 2 interrupts
respectively from the PC communication device, an 8250 serial
interface controller. Reference 6 contains complete technical
data for the 8250 serial controller including hardware register
structure, associated interrupt types, and control bits required
for register configuration.

4.3.2 Communication Parameter Setup

Communication parameter setup is accomplished by writing control
bits into the various eight-bit registers of the 8250 serial
controller. Parameters requiring attention are baud rate (bits --
per second of data to be transferred through the port), number of

12



stop bits transmitted after each data byte, parity (even, odd, or
none), and word length for each byte (seven or eight bits).
Values of 1200 baud, no parity, one stop bit, and eight bit word
length are default settings for initial boot-up of the monitor
program. Other parameter configurations are available for online
selection and are listed in the menus shown in figure 8. The
monitor program contains tables of eight-bit binary wvalues
required to configure the 8250 registers for each of these
supported configurations. Software functions obtain proper binary
values for required register configuration by using menu
selections from figure B as pointers into these tables.

Reference 6 contains a technical description of the 8250 register
structure and control bit configurations required for all
supported functions.

At startup, the existent contents of the 8250 registers are read
and stored before writing any new setup information to them,
These entry parameters are then used at program exit to restore
each port status to its original condition. :

After completion of communication port setup, program flow will
have progressed through element 9L of figure 9.

4.4 Screep Layout Implementation

The final setup task involves creation of the screen layout
illustrated in figure 1 and represented by element 9N in figure 9,
Screen configuration is accomplished by writing text characters
directly into video memory, a technique which enhances program
performance by very rapidly creating a screen display.

4.4.1 Identification of Video Memory Locations

Before any direct memory writing is done, proper memory locations
must be identified to prevent overwriting critical system
information. Determination of the location of the active video
page 1is required since some graphics hardware adapters can
simultaneously store several screens, or pages, of video memory.
Use of Read-Only Memory (ROM) Basic Input/Output System (BIOS)
functions is an effective method for obtaining current values of
video mode and video page which can, in turn, be used to identify
the current video memory starting location for the system
currently in use. Reference 2 provides a description of this
technique.

An integer pointer initialized to the starting location of current
video memory can then be used to write directly into memory cells
corresponding to any row and column screen position. A pointer to
an integer (16 bits) must be used, since two bytes are required to
control the display at each screen position, one byte being the
character to print and the other its display attribute. Examples
of attributes for a monochrome display are normal video (white on
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black), reverse video (black on white), and blinking video. A 25
row by 80 column text screen will contain two thousand character
locations. Thus two thousand integer values in memory (4K bytes)
are required for a full screen of text display.

4.4.2 Accessing Video Memory

A pointer variable "vidpointer" for use in selecting video memory
locations can be declared in the following manner:

unsigned int far *vidpointer;

As was the case in section 4.2 above, declaration of a "far"
pointer is needed to allow access to locations anywhere in
physical memory. The value assigned to this pointer will be
determined by the results of ROM BIOS checks for graphics hardware
configuration (See reference 2.).

A general C function of the following form was written for
directly writing one or more identical characters to video memory:

1. void vid_write(char ch, unsigned char attr,
int first_cell, int cell_ct)

2. int v_off, last_cell; unsigned int vid_cell;

3. last_cell = first_cell + cell_ct;

4, vid_cell = bytes_to_int(attr, ch);

5. for( v_off = first_cell; v_off < last_cell; v_off++);
6. * (vidpointer F v ' off) = v1d_cell,

7. return;

} /* End of Function /*

Statement 1 defines the function and the parameters that must be
passed to it. A variable "ch" is the character to be written to
video memory and thus immediately displayed on the screen. The
display attribute is passed to the function through the parameter
"attr". Another parameter "first cell" is the starting location,
offset from the start of video text memory, where writing is to
occur. The value "cell ct" is the number of consecutive loc¢ations
into which the character is to be written, Statement 4 combines
the two byte values, "ch" and "attr", into the unsigned integer
"vid cell"™ for fitting into a 16-bit video memory data element.
Another function "bytes_to_int ()" is called to form the 16-bit
value. Statements 5 and 6 constitute a loop to actually place the
variable "vid_cell"™ into the requested number of consecutive video
memory locations. The expression in statement 6 means place the
value of "v1d_cell“ into the memory location pointed to by -—---

" (vidpointer + v_off)" where the integer "v_off" is an offset from
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‘the beginning location of video text memory. Looping with "v_off™"
being incremented in each iteration will result in the appearance
of a string of identical characters on the screen.

Passing a space character (20 Hex) to the function "vid_write()"
with reverse video attribute and a cell count of 80 is used to
produce each of the three horizontal bars shown in figure 1.

Status messages in the reverse video bars are also produced by
writing character strings directly into video memory. A general C
function of the following form was written for this purpose:

1. void string_to_vmem( int vm _off, unsigned char attr,
char *c_ptr )

- 2. while( *(c_ptr) != '\0")
3. *(vidpointer + vm off++) =
bytes _to_int (attr, *c_ptr++);
4. return;

{ /* End of Function */

This function is similar to the function "vid_write()" shown in
the previous section except that a "while" loop replaces the "for"
loop. A pointer to the character string to be written is passed
to this function through the variable "char *c_ptr" in statement
1. A single display attribute applies to all characters in the
string and is given to the function by the expression "unsigned
char attr"™ in statement 1. Each pass through the while loop in
statements 2 and 3 increments both the video memory offset and the
string's character position. Also, with each pass the character
and attribute bytes are combined into a 16-bit word and written
into the cell pointed to by "*(vidpointer + vm off)".

An example definition of a string constant that can be passed to
this function is:

#define PORT_ID_ STR "COMM 1";

The name of the string, "PORT_ID_STR", is a pointer to its first
character. Printing this string on the screen is accomplished by
passing its name ("PORT_ID_STR"), its desired attribute, and its
starting video memory offset to the above function. A video
memory offset value corresponding to a row and column position on
the screen is obtained by multiplying the row number by 80 and
adding the column number.

All the messages shown in flgure 1 are deflned as strlng constants

and printed to the screen using the above-described function
"string to_vmem()". Default messages are printed at boot-up, but
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online changes are made in response to the keyboard entries listed
in the help screen of figure 6.

4.5 Main Program Operation

After screen initialization, element 90 of figure 9 has been
reached and the monitor program enters a loop of indefinite
duration which can be terminated by entry of ALT-X by the user.
Program looping repeatedly checks, in turn, the keyboard buffer
and two buffers configured to separately collect input bytes from
each communication port. Various resulting actions occur as a
function of program operational modes and values of the data bytes
fetched from these sources.

4.5.1 Checking for Keyboard Entry

Element 90 in figure 9 represents the monitor program's check for
any keyboard entries which would place characters in the PC's
internal keyboard buffer. The Turbo C library function "kbhit ()"
provides a convenient means of fetching a waiting keyboard entry.
An example of its use is:

int key in;
if( kbhit () )
key _in = getch{();
else
{ No keyboard entry waiting. Execute next program
statement. }

If a key has been pressed, its value will be placed in the
variable "key in"™. Otherwise, program flow continues to the next
instructions which check the buffers holding any data received
from the serial ports, (operations illustrated in figure 10 and

described later.)

4.5.2 Keyboard Mode Control Entries

Continuing with the flow chart in figure 9, it is seen that if
keyboard activity is found then a check is made to determine
whether it is one of the mode control functions listed in the help
screen of figure 6. If so, and if ALT-X was entered, the program
will terminate with normal exit to DOS. Flow chart elements 9P,
9Q, and 92 illustrate this path. Normal exit will result in

closing all open files and resetting both the interrupt and
communication parameter status of each serial port to the i
conditions found at program start—up " 'All the necessary entry
information was saved during the port initialization procedures o
described earlier in section 4.3.2. Other appropriate mode control
actions, such as opening log files or changing communication

parameters, will be pgrformed 1if the requested mode control was not

the ex1t command
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Figures 6 and 8 illustrate mode control actions which utilize menu
windows superimposed on the screen. Each of these menus is
displayed by writing an array of string constants to video memory.
The following baud rate selection menu is an example of such an
array of string constants:

char *baud_lst[1l1l] =

{ " BAUD RATE SELECT "

<1>
<2>
- L3>
<4>
<5>
<6>
<7>

SELECTION

300
1200
2400
4800
9600
19200
38400

L T R e R . T T

"

——
-

Each array element is a string constant which can be written to
video memory through a call to the function "string_to_vmem()"
described earlier in section 4.4. A loop of 11 iterations with
each iteration calling this function will then display the entire
table one string at a time. With each iteration, the offset into
video memory for writing is increased by 80 integer elements to
place each successive string constant in the same column of a new
line. This screen writing method is very fast and results in a
menu window that pops up instantly with keyboard selection.

Underlying screen contents must not be destroyed by any
superimposed menu window. A convenient method of accomplishing
this task is reading the contents of the screen's video memory
into a buffer, displaying a menu such as shown above, making a
menu selection, and then writing the saved buffer back into video
memory. Restoring the screen from the buffer will overwrite and
thus erase the temporary menu. Turbo C compiler packages contain
library functions "gettext ()" and "puttext ()" to respectively
capture and restore the screen contents using a four kilobyte

buffer defined by the programmer.

Capture of the screen contents to a file also involves reading the
contents of video memory. When this operation is activated, by
entry of ALT-G from the keyboard, 2000 integer locations are read
beginning with the location pointed to by "vidpointer" (See
subsection 4.4.2.). Then the attribute byte of each resulting
integer is discarded and the remaining character byte is written
into the file "SCREEN.DAT" in the default directory. Thus, the
file will contain only printable ASCII characters.

Reference 1 containsrdetailed tréatments of file handling and all

other programming techniques used to implement the actions
described in this subsection.
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4.5.3 Keyboard Entries Not Requiring Mode Control Actions

Elements 95, 9T, 9U, and 9V of figure 9 illustrate the path taken
by the monitor program if the keyboard entry found in element 90
does not require a mode control function. If half duplex is
active, the keyboard entry will be printed to the screen in the
lower window as shown in figures 1, 4, and 5. Programming
techniques used for this screen printing operation are described
in subsection 4.5.3.1 below.

Finally the need for transmission of the keyboard entry to one or
both communication ports is checked as shown in element 9U of figure
9, If transmit mode 1is active for either or both ports, the
keyboard entry is sent out accordingly using methods described in
subsection 4.5.3.2 below. If transmit is not active, program flow"
proceeds to elements 9W and 9X for checking of the communication
ports for any waiting input.

4.5.3.1 Printing to the Screen

For enhanced performance, low-level ROM BIOS functions called by
assembly language routines are used both to position the cursor to
the screen position where a character is to be printed and to
actually print the character. As described in detail in references
2 and 4, BIOS interrupt 10 Hex provides a number of video services
including cursor positioning, setting the cursor size, scrolling up
or down in a window, clearing a screen window, obtaining the
current video mode, and screen printing.

Each of the three screen windows is defined by selecting row and
column values for its corners. The first character printed in a
window will be placed at the lower left corner, or the zero window
position. Current position for writing the next character in each
window is maintained by a counter which is incremented after every
write operation. A flag, unique to each of the three input data
sources, directs each screen write operation to the correct
window.

An example assembly language routine to position the cursor at row
10 and column 15 follows:

_CUR_POSITION PROC NEAR ;Name of Assembly Procedure

MOV  DH,10 ;Row number in DH register

MOV DL, 15 ;Column number in DL register

MOV  AH,2 ;BIOS cursor position service

INT 10H ;Transfer control to BIOS

RET ;Return to calling routine
_CUR_POSITION ENDP ;End of Assembly Procedure

All calls to the BIOS follow this general method. Register AH
must contain the BIOS service number, in this case 2, associated
with the desired task. Printing a character to the screen at the
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present cursor position using BIOS interrupt 10 Hex can be done
with the following procedure:

_SCREEN_PRINT PROC NEAR ;Name of Assembly Procedure
PUSH BX :Save BX register contents
PUSH CX ;Save CX register contents
MOV aH, 9 ;BIOS screen print service.
MOV BH,VID PAGE ;Current video page.

MOV BL, VID_ATTR ;Current display attribute.

MOV CX,1 ;Number of characters to print

INT 10H ;Transfer control to BIOS.

POP CX ;Restore CX register contents

POP BX ;Restore BX register contents

RET ;Return to calling routine.
_SCREEN PRINT ENDP ;End of Assembly Procedure

Notice here that register AH contains the value nine which is the
screen-print service for BIQS interrupt 10 Hex. The current video
page for use in register BH above can be determined with another
call to BIOS interrupt 10 Hex using service number 15 in register
AH. Examples of additional uses made by the RS-232 monitor
program of BIOS interrupt 10 Hex include completely clearing a
window and scrolling up one line in a window when printing reaches
the maximum right screen column. Most assembly procedures such as
that listed above are written to be called from C functions.

Reference 4 contains complete descriptions of all the Central
Processor Unit (CPU) registers in the IBM PC as well as technical
descriptions and example uses of all DOS and BIOS interrupt
services.

4.5.3.2 Transmission to COM Ports

Transmission of a byte to a COM port is accomplished by writing
the byte to the data register of the 8250 serial communication
device. The Turbo C library function "outportb()" can be used for
this task. Use of this function takes the form:

char out_byte;
if( 8250_XMIT BUFFER_EMPTY )
outportb( out_ byte, COM_IO_ADDRESS );

In this example, the parameter “"COM IO _ADDRESS"™ will be one of the
I/0 port addresses listed in the table of subsection 4.2. The
variable "out byte" is the value of the byte to be transmitted.

Before sending any output byte to a COM port, a status check of
the transmit buffer of the 8250 serial device is needed. A
nonempty buffer indicates that a previous transmission is not
complete, and data loss will likely occur if a new byte is
written. This test consists of checking a bit in one of the 8250
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registers, a task performed by the second line of the above
example.

Technical data needed for all 8250 register programming used in
this subsection are provided in reference 6. That reference also
describes and illustrates the I/O programming methods used in the
above example.

4.5.4 Communication Port Input Handling

Any data byte received by the 8250 serial device at either COM
port will generate a hardware interrupt which immediately calls a
corresponding ISR. As its first step, the ISR reads the input
byte from the 8250 data register, an operation which can be
conveniently performed using the Turbo C library function
"inportb()™. An example use of this function is:

char in_byte;
in_byte = inportb( COM_IO_ADDRESS );

Here the variable "in _byte" assumes the value of a byte fetched
from the port with I/0 address "COM IO ADDRESS"™ which will be one
of the addresses listed in the table of subsection 4.2 above.
Next, the ISR will place "in byte" into a software circular First-
in, First-out (FIFO) buffer, the functioning of which is
illustrated in figure 11 and described below.

4.5.4.1 Software First In First Qut (FIFO) Circular Buffer

A circular FIFO buffer is created in software and used to
temporarily store input data bytes received from an interrupt
driven serial communication port. Reference 6 contains a detailed
description of this commonly used buffering technique.

As can be seen from figure 11 the buffer functions in conjunction
with two independent operations, one to deposit data and another
to retrieve it. 1In the monitor program described herein, the ISR,
which is activated when a byte is received from a communication
port, 1is the buffer's writing operation; while the tasks depicted
by elements 10A and 10C in figure 10 perform data retrieval
functions. Separate input and output pointer variables (see
figure 11) control buffer locations where data are written into
and read from, respectively. Both these pointers are set to zero
at program startup and, thus, initially point to the bottom of the
buffer. An operation depositing a data byte will write it into
the cell pointed to by the input pointer. Then the input pointer
variable must be incremented to select the next cell available for
writing. 1In similar fashion, a routine fetching a byte will read
it from the cell pointed to by the output pointer and then
increment that pointer variable to select the next cell from which
reading must occur. Both pointers will eventually reach the
buffer's top at which time they are reset to zero to once again
point to the bottom. Thus, the buffer is circular in nature.

20



Read and write operations may occur totally independently, but
both begin at the bottom and separately increment pointers
specific to each operation. Therefore, cells will be read from in
the same order as they were written into, yielding a FIFO buffer,

Testing for COM port input, an operation depicted by element 10A
of figure 10, consists of checking the FIFO buffer for any waiting
bytes. This is accomplished by comparing the values of the input
and output buffer pointers. If the pointers are equal, they point
to the same location; and, thus, no byte is waiting to be read.
This indicates that read operations have reached the last buffer
location which was written into. However, if the input pointer is
greater than the output pointer, then one or more bytes are
available for retrieval.

4.5.5 No Communication Port Input Waiting

Tests represented by elements 10A and 10C of figure 10 fail if no
bytes are available in the FIFO buffer. When this happens for both
COM ports, program flow will once again loop back to element 90 of
figure 9 and perform another test for keyboard entry.

4.5.6 Byte Waiting in COM 1 Input Buffer

When a waiting byte received from COM port 1 is fetched from the
input buffer, a check is made in element 10H to determine the mode
for printing it on the screen. If normal character mode is
active, screen positioning and printing is accomplished by methods
described in subsection 4.5.3.,1 above. 1If binary display mode is
active, then a hexadecimal representation of the byte is displayed
by separating it into two characters which are then individually
printed. This binary mode, which is described in the following
subsection, is useful for display of the actual bit structure of
non-printable bytes which would appear either as a graphic symbol
or not at all in the character display mode. An example of this
display mode is shown in figure 5.

4.5.6.1 Hexadecimal Display of Received Bytes

A commonly used algorithm for display of bytes in hexadecimal form
is described in detail in reference 8. A general description of
its specific use in the monitor program described herein is
contained in the following paragraphs.

Every eight-bit byte can be represented in hexadecimal form by two
printable ASCII characters. Individual printing of these two
characters will result in display of the actual bit structure of
the byte. This individual printing begins by placing each
character into the lower halves of two separate bytes. For
example, the byte with hexadecimal value BF is not printable and
will not display an alphanumeric character when processed using
normal character video. However, the two characters can be
individually written as such if they are placed into separate
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bytes with values adjusted to correspond to "B" and "F" in the
ASCII table.

A new byte resulting from a four bit right shift of the byte BF
Hex will have the value OB Hex. This isolates the most
significant character of the byte BF Hex. Also, a new byte
resulting from the logical AND of BF Hex and OF Hex will have the
value OF Hex, thus isolating the least significant character of
the byte BF Hex. However, additional adjustment to the values of
the two new bytes is required before their direct printing will
display the ASCII characters "B" and "F". This adjustment
consists of adding a constant to the bytes to make them equal to
the hexadecimal representation of the ASCII values of the
respective characters. Reference 8 presents an algorithm for
accomplishing this. It consists of adding 48 decimal to bytes
with values between zero and nine or adding 55 decimal to bytes
with values between "A" (10 decimal) and "F" (15 decimal). 1In
the example discussed here (byte BF Hex), a value of 55 decimal
would be added to each of the two bytes 0B Hex and OF Hex to yield
42 Hex and 46 Hex, respectively. Consultation of Reference 8 and
a standard ASCII table shows that normal character printing of
these last two bytes will result in display of "BF", the original
binary byte. Each final printable ASCII character is written to
the screen using the ROM BIOS method described in subsection
4.5.3.1 above.

On the right side of the binary display screen, as can be seen -
from figure 5, character printing also occurs for any bytes that
are printable. A decimal is displayed in this section for any
that are non-printable. Thus, for binary display, the screen
window is divided into left and right sections with each received
byte being prlnted in a dlfferent format in each section. .

4.5.7 ng_nla_fgr_ﬁeneimmﬁa

Next a status check of the log file feature is made in the step
depicted by element 10J of figure 10. If the log file feature is
not active, COM Port 1 operations are complete for the current
loop iteration. Program flow then proceeds to element 10C which
will trigger operations for COM Port 2 identical to those
described in subsections 4.5.5, 4.5.6, and 4.5.6.1 above.

Active log file status will result in each received byte being
initially placed into a local intermediate buffer (element 10M of
figure 10). This buffer, which is 512 bytes in size, is a =
circular FIFO buffer very similar to that illustrated in figure
11. A buffer pointer is inltlally set to zero incremented with
each write operation. When the buffer's top 1s reached, the log
file is opened and the contents of the buffer are read into it .
beginning with the first buffer location written. Then the file
is closed and the buffer pointer is reset to zero. This permits
the file to remain closed for most of an operating session since
it needs to be open only when receiving the contents of a buffer.
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Thus, any abnormal program termination should cause loss of at
most one full buffer (512 bytes) of saved data.

Log file handling operations for COM Port 1 are represented by
elements 10M, 10R, 10Q, and 10S of figure 10. High-level Turbo C
library functions, which are described in reference 1, are used
for file handling.

4.5.8 Input from Communication Port 2

After log file operations for communication port 1 are completed,
the entire procedure described in subsections 4.5.5, 4.5.6,
4.5.6.1, and 4.5.7 above is repeated for COM Port 2. A separate
FIFO circular buffer, identical in operation to that described in
subsection 4.5.4.1, is used to collect incoming data bytes from
COM Port 2. Depending upon whether a byte is waiting and the log
file status, COM Port 2 operations will end with tasks depicted in
elements 10D, 10P, or 10T in figure 10. At this time program flow
will return to element 90 of figure 9 and begin another complete
iteration.

4.6 ISRV Grid Applications-

Terminals for use with the TSRV VAX host computers now consist of
five Grid series 1530 laptop computers. These units, however, are
80386 based PC clones and are readily adaptable to numerous
additional applications. Compatibility of the Grid laptops with a
number of quality compiler and assembly development packages
permits many extended applications through software alone.

The TSRV Grid laptops were delivered with only one externally
accessible serial port. This is an acceptable configuration for
terminal use but is a significant limitation for extended RS-232
applications such as the dual port monitor system described in
this document. Added RS-232 capability was accomplished, however,
by implementing a second communication port through adaptation of
a Grid internal bus expansion feature. Development of low-level
communication software, configured for compatibility with bus
expansion hardware purchased from Grid, accomplished this task. A
Grid version of the dual port R$-232 bus monitor software was then
written which includes a user interface identical to that
described in section 3.0 of this document. Significant low-level
software differences exist between the Grid and normal PC versions
of the monitor program, but they are transparent to the user.
Development of this Grid serial expansion interface for more
general RS-232 applications is described in a separate technical
memorandum by the author.

5.0 CONCLUDING REMARKS

Increased use of RS-232 data busses in the TSRV system requires
continuous development of task-specific software for interfacing
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peripherals which have different characteristics. Software
development and testing are aided by the ability for both off-
line determination of peripheral interface characteristics and
real-time monitoring of operating data busses. The RS-232 bus
monitor system described in this document represents a response to
these needs.

For increased versatility, the monitor system is configured for
general use on IBM PC clone computers including the Grid laptop
units in the TSRV system. Many specific features required for
adaptation of the program to different applications can be readily
implemented through software changes. Prominent features of the
monitor system include ability for simultaneous connection to two
data lines, ability for online control of transmission to these
connected lines, and the ability to display and record data from
both connected lines in binary form.

Three different configurations of the monitor program have been
used to support the TDWR portion of the TSRV windshear flights.
Specific TDWR applications include use in a Grid computer for in-
flight disk file recording of computed data, in-flight monitoring
of the packet radio data uplink, and interfacing of the TDWR data
sources to the TSRV ground-based, packet-radio system,
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CHECK COM PORT
HARDWARE

@

EXIT TO DOS.

NO COM PORT
HARDWARE FOUND.

G

BEGIN
NFINITE LOOP.

CHECK SERIAL PORTS
FOR INPUT, SEE

FIGURE 10.
V an .

oX

INITIALIZE COM 1 —1

SETCOM 13

T

INITIALIZE COM 3

INITIALIZE COM 2

SET COM 2/4

FLAG

INITIALIZE COM 4

INITIALIZE

TO FIGURE 10.

SEND KEYBOARL,
ENTRY TO 1 OR
BOTH PORTS.

. ¥

I
@ SCREEN.

PRINT KEYBOARD
ENTRY TO
SCREEN.

Figure 9. Flow Chart of Program Operation,' Setup And Keyboard Functions.

PERFORM :QR)
MODE 3
CONTROL.

+ 3
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CHECK COM 1 BYTE CHECK COM 2 BYTE
FOR WAITING FOUND? FOR WAITING FOUND?
_BYTE BYTE

BINARY DISPLAY. BINARY DISPLAY
CHAR YT YT '
DISPLAY PRINT BYTE AS PRINT BYTE AS 3:;’2,'1”
MODE? 2 CHARACTERS. 2 CHARACTERS. MODE?

YES
101
T

PRINT CHARACTER
TO SCREEN.

WRITE BYTE TO
COM 1 LOCAL
FILE BUFFER.

'

v

INCREMENT COM

1 FILE BUFFER
POINTER.

ISCOM 1
BUFFER
FULL?

105

TO SCREEN.

PRINT CHARACTER

| On WRITE BYTE TO

COM 2 LOCAL
FILE BUFFER.

YES

!

INCREMENT COM |
2 FILE BUFFER

ISCOM 2
BUFFER
FULL?

OPEN COM 1 LOGFILE, OPEN COM 2 LOG FILE,
EMPTY BUFFER INTOIT, EMPTY BUFFER INTO IT,
CLOSE LOG FILE. < CLOSE LOG FILE.

Ll
y
CONTINUE LOOPING. @
RETURN TO 9N,
FIGURE 9 TO CHECK FOR
KEYBOARD ENTRY.

TO ITEM 9N, FIGURE

Figure 10. Flow Chart of Program Operation, Serial Port Input Handling.
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-¢———— BUFFER TOP

-@— BUFFER IN POINTER.
INCREMENT ON
WRITE.

q—— BUFFER OUT POINTER.
INCREMENT ON
READ.

<4—— BUFFER BOTTOM

Figure 11. Circular FIFO Buffer Technique Used to Collect
Input Bytes From Serial Ports.

36






Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information 15 estimated to average 1| hour per response, including the time for reviewing instruction: hi isti

gathering and maintaining the data needed, and completing and reviewing the collection of information. kndg(omments regarding tlgis t:urden es‘tlnsf:t? J:\gneyng‘t;'ng :mrgﬁs’{
collection of information, mdqdmg suggestions for reducing this burden. to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Dawvis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, 20503.

T AGENCY USE ONLY (Leave blank) ] 2. REPORT DATE 3 REPORT TYPE AND DATLS COVERED
December 1991 echnical Memorandum
2 TITLE AND SUBTITLE 5. FUNDING NUMBERS

A PC-Based Bus Monitor Program for Use

With the Transport Systems Research Vehicle
BS-232 Communication Interfaces 505-64-13-11

6. AUTHOR(S)

Wesley C. Easley

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

NASA Langley Research Center
Hampton, VA 23665-5225

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) —_ 110. SPONSORING / MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration NASA TM-104175

Washington, DC 20546-0001

11. SUPPLEMENTARY NOTES

122. DISTRIBUTION / AVAILABILITY STATEMENT o 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category 04

13. ABSTRACY (Maximum 200 words)

Experiment critical use of RS-232 data busses in the Transport Systems Research Vehicle
(TSRV) operated by the Advanced Transport Operating Systems Program Office at the NASA
* angley Research Center has recently increased. Each application utilizes a number of
nonidentical computer and peripheral configurations and requires task specific software

development.

To aid these development tasks, an IBM PC-based RS-232 bus monitoring system has been
produced. It can simultaneously monitor two communication ports of a PC or clone including
the nonstandard bus expansion of the TSRV Grid laptop computers. Display occurs ina
separate window for each port's input with binary display being selectable. A number of other
features including binary log files, screen capture to files, and a full range of communication

parameters are provided.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Flight Operational Improvements 16. PRICE CODE
Experimental Flight Displays __ A03
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION }19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UMCLASSIFIED
Standard Form 298 (Rev. 2-89)

NSN 7540-01-280-5500
Prescribed by ANSI Std. 239-18

Ine 107



